Beyond the Guidebook:
Context for Rainwater Management and Green Infrastructure in British Columbia

June 2007
Preface

The British Columbia landscape is being transformed by settlement and economic growth. While the province has been experiencing enhanced social and economic well-being, it has also experienced *avoidable cumulative environmental impacts*. The latter are due to pressures on land and water resources. The desire to mitigate environmental impacts has provided a driver for a ‘green infrastructure’ movement that is water-centric and is founded on a natural systems approach.

The **Water Sustainability Action Plan for British Columbia** provides a partnership umbrella for an array of on-the-ground initiatives that promote a ‘water-centric’ approach to community planning and development. One of the tools developed under this umbrella is the **Water Balance Model for British Columbia**.

Developed by an Inter-Governmental Partnership (IGP) as an extension of *Stormwater Planning: A Guidebook for British Columbia*, the Water Balance Model enables users to visualize how to implement green infrastructure solutions that achieve rainwater runoff source control at the site scale. Published in 2002, the Guidebook was a catalyst for change that has resulted in British Columbia achieving international recognition as a leader in implementing a natural systems approach to rainwater management.

The Guidebook’s premise that *land development and watershed protection can be compatible* represented a radical shift in thinking in 2002. The Guidebook recognized that water volume is something over which local government has control through its infrastructure policies, practices and standards. **Beyond the Guidebook** is an initiative that builds on this foundation by advancing a runoff-based approach and tool – the ‘**Water Balance Model powered by QUALHYMO**’ – to help local governments achieve desired urban stream health and environmental protection outcomes at a watershed scale.

Ted van der Gulik, P.Eng., Chair
Inter-Governmental Partnership

Paul Ham, P.Eng., Chair
Green Infrastructure Partnership

Date of Issue by the Inter-Governmental Partnership: 11 June 2007
The Water Sustainability Action Plan for British Columbia is sponsored by the Province of British Columbia, and the Action Plan elements are being delivered through partnerships. Through outreach and education, and also by providing tools such as the Water Balance Model, the guiding vision is to influence land and water practitioners to learn about and use practices that better balance the necessary relationships of settlement activity and ecological assets in local and regional landscapes. Under the Action Plan umbrella, the Water Sustainability Committee of the BC Water & Waste Association is the managing partner and is responsible for providing leadership, facilitation and organizational services for program delivery.
Inter-Governmental Partnership - Steering Committee

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Represented By</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Ministry of Agriculture & Lands</td>
<td>Ted van der Gulik, Chair</td>
<td>Assistant Director / Senior Engineer</td>
</tr>
<tr>
<td>Environment Canada</td>
<td>Laura Maclean, Co-Chair</td>
<td>Agri-Environmental Standards Coordinator</td>
</tr>
<tr>
<td>Environment Canada</td>
<td>Julia Brydon (alternate)</td>
<td>Pollution Prevention Coordinator</td>
</tr>
<tr>
<td>District of North Vancouver</td>
<td>Richard Boase</td>
<td>Environmental Protection Officer</td>
</tr>
<tr>
<td>City of Surrey</td>
<td>Remi Dube</td>
<td>Manager, Drainage Planning</td>
</tr>
<tr>
<td>City of Surrey</td>
<td>David Hislop (alternate)</td>
<td>Project Engineer, Drainage Planning</td>
</tr>
<tr>
<td>Greater Vancouver Regional District</td>
<td>Ed von Euw</td>
<td>Senior Engineer</td>
</tr>
<tr>
<td>Greater Vancouver Regional District</td>
<td>Mark Wellman (alternate)</td>
<td>Project Engineer</td>
</tr>
<tr>
<td>BC Ministry of Community Services</td>
<td>Glen Brown</td>
<td>A/Director, Municipal Engineering Services</td>
</tr>
<tr>
<td>BC Ministry of Community Services</td>
<td>Chris Jensen (alternate)</td>
<td>Infrastructure Resource Officer</td>
</tr>
<tr>
<td>BC Ministry of Agriculture & Lands</td>
<td>Jay Bradley</td>
<td>Strategic Land Policy</td>
</tr>
<tr>
<td>Department of Fisheries & Oceans</td>
<td>Corino Salomi</td>
<td>Head, Habitats Section, Lower Fraser (West)</td>
</tr>
<tr>
<td>Water Sustainability Action Plan</td>
<td>Kim Stephens</td>
<td>Program Coordinator</td>
</tr>
</tbody>
</table>

Inter-Governmental Partnership – Other Partners

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Represented By</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada Mortgage & Housing Corp</td>
<td>Cate Soroczan</td>
<td>Policy & Research Division</td>
</tr>
<tr>
<td>City of Calgary</td>
<td>Liliana Bozic</td>
<td>Water Quality Research Engineer</td>
</tr>
<tr>
<td>District of West Vancouver</td>
<td>Raymond Fung</td>
<td>Manager, Utilities</td>
</tr>
<tr>
<td>City of North Vancouver</td>
<td>Tony Barber</td>
<td>Assistant City Engineer</td>
</tr>
<tr>
<td>District of Maple Ridge</td>
<td>Andrew Wood</td>
<td>Municipal Engineer</td>
</tr>
<tr>
<td>City of Coquitlam</td>
<td>Dave Palidwor</td>
<td>Manager, Park Planning, Design and Construction</td>
</tr>
<tr>
<td>City of Vancouver</td>
<td>David Desrochers</td>
<td>Manager, Sewers & Drainage Design</td>
</tr>
<tr>
<td>Corporation of Delta</td>
<td>Hugh Fraser</td>
<td>Manager, Utilities</td>
</tr>
<tr>
<td>Township of Langley</td>
<td>Sudu Varathodakambarama</td>
<td>Senior Water Resources Engineer</td>
</tr>
<tr>
<td>City of Abbotsford</td>
<td>Art Kastelein</td>
<td>Manager, Transportation and Drainage</td>
</tr>
<tr>
<td>City of Chilliwack</td>
<td>Rod Sandersor</td>
<td>Manager, Transportation and Drainage</td>
</tr>
<tr>
<td>City of Kelowna</td>
<td>Robin Barnes</td>
<td>Water/Drainage Engineer</td>
</tr>
<tr>
<td>City of Courtenay</td>
<td>Kevin Lagan</td>
<td>City Engineer</td>
</tr>
<tr>
<td>District of Highlands</td>
<td>Laura Beckett</td>
<td>Planner</td>
</tr>
<tr>
<td>District of Metchosin</td>
<td>Joe Martignago</td>
<td>Chief Administrative Officer</td>
</tr>
</tbody>
</table>

Water Balance Model - Vancouver Island Coordinating Team

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Represented By</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Ministry of Agriculture & Lands</td>
<td>Jay Bradley, Chair</td>
<td>Strategic Land Policy & Legislative Services Br</td>
</tr>
<tr>
<td>BC Ministry of Community Services</td>
<td>Chris Jensen, Co-Chair</td>
<td>Infrastructure Resource Officer</td>
</tr>
<tr>
<td>BC Ministry of Environment</td>
<td>Peter Law</td>
<td>Habitat Biologist</td>
</tr>
<tr>
<td>Department of Fisheries & Oceans</td>
<td>Al Magnan</td>
<td>Project Assessment Biologist</td>
</tr>
<tr>
<td>City of Courtenay</td>
<td>Sandy Pridmore</td>
<td>Engineering Technologist</td>
</tr>
</tbody>
</table>

Green Infrastructure Partnership - Steering Committee

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Represented By</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Municipal Construction Documents Association</td>
<td>Paul Ham, Chair</td>
<td>General Manager, Engineering, City of Surrey</td>
</tr>
<tr>
<td>BC Water & Waste Association</td>
<td>Raymond Fung</td>
<td>Chair, BCWWA Water Sustainability Committee</td>
</tr>
<tr>
<td>BC Ministry of Community Services</td>
<td>Dale Wall</td>
<td>Assistant Deputy-Minister, Local Government</td>
</tr>
<tr>
<td>BC Ministry of Community Services</td>
<td>Meggin Messenger</td>
<td>Intergovernmental Relations & Planning Division</td>
</tr>
<tr>
<td>West Coast Environmental Law</td>
<td>Susan Rutherford</td>
<td>Staff Counsel</td>
</tr>
<tr>
<td>Water Sustainability Action Plan</td>
<td>Kim Stephens</td>
<td>Program Coordinator</td>
</tr>
</tbody>
</table>

BCWWA Water Sustainability Committee - Steering Group

<table>
<thead>
<tr>
<th>Partner Organization</th>
<th>Represented By</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>District of West Vancouver</td>
<td>Raymond Fung, Chair</td>
<td>Manager, Utilities</td>
</tr>
<tr>
<td>BC Ministry of Agriculture & Lands</td>
<td>Ted van der Gulik, Vice-Chair</td>
<td>Assistant Director / Senior Engineer</td>
</tr>
<tr>
<td>Water Bucket Website Partnership</td>
<td>Mike Tanner, Vice-Chair</td>
<td>BC Hydro PowerSmart (retired)</td>
</tr>
<tr>
<td>BC Water & Waste Association</td>
<td>Eric Bonham</td>
<td>Leadership Council</td>
</tr>
<tr>
<td>Water Sustainability Action Plan</td>
<td>Kim Stephens</td>
<td>Program Coordinator</td>
</tr>
</tbody>
</table>
Table of Contents

1. What is Rainwater Management, Really? .. 1
 ▪ Scope
 ▪ Why Beyond the Guidebook

2. Integrated Strategy for Managing the Rainfall Spectrum 2
 ▪ Key Message
 ▪ Educational Context

3. Performance Targets ... 3
 ▪ Historical Context
 ▪ Role of Performance Targets
 ▪ Volume-Based Approach

4. Adaptive Management .. 4
 ▪ Learning by Doing

5. Water Balance Model ... 5
 ▪ Achieve a Light Hydrologic Footprint
 ▪ Improve the Built Environment, Protect the Natural
 ▪ Integrate Perspectives

6. Beyond the Guidebook ... 6
 ▪ Mind-Map
 ▪ Milestones
 ▪ Case Studies
 ▪ Fergus Creek Pilot

7. Green Infrastructure Partnership ... 8
 ▪ Showcasing Innovation Series

8. UBC Tree Canopy Interception Research Project 9
 ▪ Research Need
 ▪ A Regional Partnership
 ▪ The Right Trees in the Right Places

9. Summary .. 10
 ▪ The First Paradigm-Shift
 ▪ The Next Paradigm-Shift

Appendix A - Resources
 ▪ Local Government Responsibility for Drainage
 ▪ Rainwater Management Tools for British Columbia
 ▪ The Green Infrastructure Guide
 ▪ Water Bucket Communities-of-Interest

Date of Issue by the Inter-Governmental Partnership: 11 June 2007
1. What is Rainwater Management, Really?

In British Columbia, the technical vocabulary of drainage practitioners is in transition as the single function view of traditional 'stormwater management' gives way to the integrated and comprehensive perspective that is captured by the term 'rainwater management'.

Stormwater suggests there is a problem, whereas rainwater is a resource. The evolution to an integrated approach over the past two decades is summarized in the graphic below.

Scope: The purpose of this document is to provide context for comprehensive rainwater management by connecting the dots between Stormwater Planning: A Guidebook for British Columbia, published in 2002, and:

- the rainfall spectrum;
- performance targets;
- adaptive management;
- the Water Balance Model;
- the Green Infrastructure Partnership;
- the UBC Tree Canopy Research Project; and
- the Beyond the Guidebook initiative.

The Guidebook established the framework for rainfall capture and a performance target way-of-thinking and designing. Beyond the Guidebook will take the Guidebook to the next level of evolution. Now that practitioners are becoming comfortable with what ‘rainfall capture’ means in practice, local governments and the development community are in a position to turn their attention to what is an achievable outcome that makes sense and results in net environmental benefits at a watershed scale.

Why Beyond the Guidebook: Through implementation of ‘green infrastructure’ policies and practices, the desired outcome in going Beyond the Guidebook is to apply what we have learned at the site scale over the past five years...so that we can truly protect and/or restore stream health in urban watersheds.

from Stormwater Management to Rainwater Management

<table>
<thead>
<tr>
<th>From TRADITIONAL to</th>
<th>INTEGRATED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Systems</td>
<td>Ecosystems</td>
</tr>
<tr>
<td>Reactive (Solve Problems)</td>
<td>Prevent (Prevent Problems)</td>
</tr>
<tr>
<td>Engineer-Driven</td>
<td>Interdisciplinary Team-Driven</td>
</tr>
<tr>
<td>Protect Property</td>
<td>Protect Property and Habitat</td>
</tr>
<tr>
<td>Pipe and Convey</td>
<td>Mimic Natural Processes</td>
</tr>
<tr>
<td>Limited Consultation</td>
<td>Extensive Consultation</td>
</tr>
<tr>
<td>Local Government Ownership</td>
<td>Partnerships with Others</td>
</tr>
<tr>
<td>Extreme Storm Focus</td>
<td>Rainwater Integrated with Land Use</td>
</tr>
<tr>
<td>Peak Flow Thinking!</td>
<td>Volume-Based Thinking!</td>
</tr>
</tbody>
</table>

Date of Issue by the Inter-Governmental Partnership: 11 June 2007
2. Integrated Strategy for Managing the Rainfall Spectrum

The Guidebook introduced the concept of an integrated strategy for managing all the ‘rainfall-days’ that occur each year. In 2002, this represented a major shift in thinking, from reactive to proactive. The Guidebook also highlighted the universality of certain relationships.

Key Message: The graphic opposite illustrates the integrated strategy for protection of life, property and the environment that is being implemented throughout British Columbia as a result of publication of the Guidebook and development of the Water Balance Model.

A key message is that ‘light showers’ account for most of the annual rainfall volume; and therefore ‘green’ or landscape-based solutions will achieve a variety of objectives encompassing both the site and watershed scales in the urban environment.

Educational Context: At the time of Guidebook publication, these two graphics proved to be powerful education tools because they:

- helped to change the way drainage practitioners and others view rainfall;
- focussed attention on the distinction between rainfall capture and runoff control; and
- promoted understanding of why infiltration is achievable for much of the year.

Circa 2000, there was fear and doubt that anything could be done to prevent rainwater runoff. These graphics were a key to changing the core beliefs of drainage practitioners.
3. Performance Targets

The Guidebook also introduced the concept of **performance targets** to facilitate implementation of the integrated strategy for managing the complete rainfall spectrum. To create a mind-map for practitioners, the rainfall spectrum was defined in terms of three tiers, with each tier corresponding to a component of the integrated strategy, namely:

- **Rainfall Capture** - keep rain on site by means of ‘rainfall capture’ measures such as rain gardens and infiltration soakaways
- **Runoff Control** - delay overflow runoff by means of detention storage ponds which provide ‘runoff control’
- **Flood Mitigation** – reduce flooding by providing sufficient hydraulic capacity to ‘contain and convey’

Defining rainfall tiers simply enabled a systematic approach to data processing and identification of rainfall patterns, distributions and frequencies.

Role of Performance Targets: Rainwater runoff capture targets provide a starting point to guide the actions of local government and the development community in the right direction.

A simple chart of rainfall and stream flow for a typical year follows and shows some of the complex processes involved in the watershed between the time rain falls and when it reaches the stream. This leap in our knowledge plus the development of the tools available to assess these relationships allows us to go Beyond the Guidebook in establishing reasonable and achievable performance targets. The next step in advancing our knowledge allows us to focus upon the stream, the critical item that is so important to the environment.

Historical Context: For convenience, and to provide a starting point for analysis, the Guidebook referenced the three tiers to a value defined as the Mean Annual Rainfall (MAR). As our understanding of what is achievable through ‘rainwater management’ has grown, we have moved beyond this early concept. Looking back:

- The MAR concept was introduced in part to provide consistency with the 1992 Land Development Guidelines.
- It established a point of departure that was familiar to practitioners so they would readily make the transition to a new way of thinking.
- In 2002, focusing attention on the MAR facilitated a paradigm-shift in the state-of-the-practice.

Introduction of the MAR focused attention upon the site level while assuming there would be benefits to the watershed and streams. Our knowledge is progressing and we now see a need to begin to evaluate the total spectrum of rainfall and the flows entering the streams from the watershed.

Volume-Based Approach: To be understood and effective, a performance target needs to synthesize complexity into a single number that is simple to understand and achieve, yet is comprehensive in scope. A runoff volume-based performance target fulfills these criteria.

For a performance target to be implemented and effective, it must then have a feedback loop so that adjustments and course corrections can be made over time. Volume-based thinking leads directly into landscape architecture, green roofs, urban reforestation, groundwater recharge, and rainwater harvesting.
4. Adaptive Management

The Guidebook is a pioneer application in North America of ‘adaptive management’ in a rainwater management setting. In the Guidebook, *adaptive management* means: We change direction when the science leads us to a better way.

Learning by Doing: The goal of adaptive management is to learn from experience and constantly improve rainwater management practices.

When *Stormwater Planning: A Guidebook for British Columbia* was published in 2002, its success and acceptance were keyed to the fact that the water balance methodology had been vetted through the case study experience of local governments and the development community.

The concepts and methodologies in the Guidebook were intended to stimulate a change in the mindset of practitioners and others, rather than cast in stone a set of prescriptive rules.

The Guidebook emphasizes that rainfall capture targets will depend on site and watershed-specific conditions.

Implicit in an adaptive management approach is recognition of the need to both accept and manage risk if the state-of-the-practice is to be advanced. Accepting risk opens the door to engineering creativity and resulting innovation.

Performance Monitoring: Major projects - such as *UniverCity* on Burnaby Mountain, *East Fraserlands* in the City of Vancouver, and *Westhills* in the City of Langford - lend themselves to adaptive management when they are implemented in phases over a multi-year period. Phasing creates opportunities to monitor performance of rainwater capture facilities, assess effectiveness over time, and refine design criteria as may be needed or desired in subsequent phases.

Over the past five years, experience has shown that landscape-based measures for rainfall capture are typically low risk, especially when they reflect an understanding of how to employ soil depth and planting coverage to best advantage. This experience has set the stage for the next leap forward – which is to apply a ‘runoff-based approach’ to rainwater management at a watershed scale.
5. Water Balance Model

To enable practitioners to undertake continuous simulation (Step #5) and adaptive management (Step #6) as introduced on the previous page, the Inter-Governmental Partnership developed the Water Balance Model for British Columbia (WBM) in 2003 as an online decision support and scenario modeling tool.

Achieve a Light Hydrologic Footprint:
Because the WBM demonstrates how to achieve a light ‘hydrologic footprint’, the tool helps planners and designers wrap their minds around how to implement ‘green solutions’ on-the-ground.

The power of the WBM process lies in the conversations that result from users generating a single number – the percentage of rainfall that becomes runoff - that represents the synthesis of each scenario. Comparison of scenarios creates understanding, especially when the focus is on the hydrologic implications of the assumptions that underpin those percentages.

Improve the Built Environment, Protect the Natural: The WBM quantifies the effectiveness of site designs that incorporate rainwater source controls such as rain gardens, tree canopy, green roofs, absorbent soil, and infiltration facilities. It does a continuous simulation over one or more years to test facility performance under different combinations of land use, soil and rainfall.

Integrate Perspectives: Another outcome associated with the WBM is that it facilitates an interdisciplinary approach that enables planning and design professionals to collaborate to achieve community liveability objectives.
6. Beyond the Guidebook

A goal of the Inter-Government Partnership is to build on the Guidebook foundation by providing practitioners with the tools and experience to advance the state-of-the-practice in rainwater management. Accordingly, the Partnership has launched an initiative called **Beyond the Guidebook**.

The purpose of this initiative is to help local governments and the development community establish what level of rainwater runoff volume reduction makes sense at the site, catchment and watershed scales.

Under the **Beyond the Guidebook** umbrella, the WBM is being integrated with QUALHYMO, a continuous simulation tool developed by the Ontario Ministry of the Environment in the early 1980s for rainfall-runoff modelling.

Beyond the Guidebook: Where Science Meets Analysis

Integration of the **Water Balance Model** and **QUALHYMO** means engineers will now have a runoff-based tool for source control evaluation and stream health assessment.

The **Beyond the Guidebook** methodology will allow practitioners to assess both site-level rainwater management measures AND flood relief projects so that they can develop a watershed approach that addresses stream protection and/or restoration. In the process, practitioners will view the watershed and its streams from a much more holistic perspective.

The Department of Fisheries and Oceans (DFO) is a participant in the ‘Beyond the Guidebook’ process, in part because this runoff-based approach is intended to resolve performance concerns arising from misapplication of a 4-page document originally released by DFO in 2000 and titled _Urban Stormwater Guidelines and Best Management Practices for Protection of Fish and Fish Habitat._

Milestones: The process of rolling out **Beyond the Guidebook** started in June 2006 with the Showcasing Innovation event hosted by the City of Surrey as part of the Celebrating Green Infrastructure Program.

It continued with the article published in the September/October 2006 issue of _Innovation Magazine_, the journal of the Association of Professional Engineers and Geoscientists of British Columbia.

The third milestone was the Water Balance Model Partners Forum in March 2007, at which time the ‘runoff-based approach’ was formally unveiled.

The target date for completion of the beta-testing for the “**Water Balance Model powered by QUALHYMO**” is late 2007.

Case Studies: The **Beyond the Guidebook** rollout process is being informed by the experience gained from two Greater Vancouver projects: the _Fergus Creek watershed plan_ by the City of Surrey; and the _East Fraserlands project_ in the City of Vancouver. The former demonstrates how to protect stream health in the suburban environment; the latter demonstrates how to maximize rainfall capture in a high density urban development.
Fergus Creek Pilot: The pilot for *Beyond the Guidebook* is the City of Surrey Fergus Creek watershed plan that is in the final stages of completion. The plan is based on implementing ‘green solutions’ as an alternative to conventional engineered ‘blue solutions’. There will be no large-scale storage ponds. Rather, rainwater runoff volume will be mostly managed through the creation of contiguous large-scale greenways.

Application of DFO Guidelines: Drainage practice is at a crossroad in the path defining the methodologies and applications used in rainwater management. *Beyond the Guidebook* enables practitioners to make a clear distinction between a rainfall-based approach and a runoff-based approach. Furthermore, the science-based analytical methodology that has been validated through the Fergus Creek pilot now enables local governments to explore the fundamental requirements implicit in the DFO Guidelines for stream health and environmental protection.

Further to the above, a basic tenet of hydrology is that rainfall and runoff have different return periods. Yet drainage practitioners persist in applying a rainfall-based approach that assumes rainfall will always result in the same magnitude of runoff. The Rainfall-Based Approach grew out of simple to use methodologies that address the reduction of flood risk for drainage conveyance systems. The Runoff-Based Approach, on the other hand, leads to the analysis of runoff and its interaction with the physical aspects considered important to the aquatic environment.

Water Balance Model powered by QUALHYMO: The principal focus of the existing Water Balance Model is on source controls for runoff volume reduction. For drainage engineers, however, a practical modelling tool must also concentrate on the overflows from the site. This is the significance of integrating the Water Balance Model with QUALHYMO. The integrated tool will have the capability to store and route the overflow from a subdivision and/or neighbourhood through a detention pond or down a stream channel. The Fergus Creek experience is being ported into the integrated tool so that the Water Balance Model powered by QUALHYMO will enable correlation of runoff volume management with desired stream erosion and water quality outcomes. The methodology for assessing the potential for erosion or sediment accumulation within a watershed is based upon shear stress as applied to the stream banks over time. This is a measure of the energy available to cause erosion in a stream. Continuous simulation is the key to generating scenario comparisons.
7. Green Infrastructure Partnership

Formed in 2003, the Green Infrastructure Partnership is promoting an integrated approach to land development and infrastructure servicing that addresses the need for coordinated change at different scales — that is: region, neighbourhood, site and building.

Under the umbrella of the Water Sustainability Action Plan, the Green Infrastructure Partnership mission is to facilitate implementation of infrastructure practices and regulation province-wide that embody a ‘design with nature’ way-of-thinking and acting. An over-arching goal is to protect and/or restore the natural environment by improving the built environment. This is the essence of why we design with nature.

Showcasing Innovation Series: As an outcome of the 2005 Consultation Workshop, organized in collaboration with the Greater Vancouver Regional Engineers Advisory Committee (REAC), the Green Infrastructure Partnership undertook to organize Celebrating Green Infrastructure: Showcasing Innovation in the Greater Vancouver Region.

The program was initiated in 2006 with a series of three events — each comprising a seminar in the morning followed by a field tour in the afternoon — with the first two hosted by the District of North Vancouver and the City of Surrey; and the third co-hosted by the City of Vancouver and UBC.

In 2006, the City of Surrey showcased the Fergus Creek plan to demonstrate what it believes can be systematically accomplished on-the-ground, at a watershed scale, now and over the next 50 years by building on the experience gained from the East Clayton Sustainable Community.

In 2007, the Showcasing Innovation program has been expanded to Vancouver Island. Three regional districts (Nanaimo, Comox-Strathcona, and Cowichan Valley) are partnering with their member municipalities under the umbrella of the Convening for Action on Vancouver Island (CAVI) partnership to host events.

Date of Issue by the Inter-Governmental Partnership: 11 June 2007
8. UBC Tree Canopy Interception Research Project

The tree canopy is an important component of the water balance, with rainfall interception easily accounting for up to 35% of gross annual precipitation.

Research Need: The genesis for the UBC Tree Canopy Interception Research Project was provided by the initial collaboration between the University of British Columbia (UBC) and the Inter-Governmental Partnership in 2005 to develop a ‘Tree Canopy Module’ for the Water Balance Model for British Columbia.

While considerable research has been undertaken in forest stands in the natural environment to quantify rainfall interception, very little has been done in an urban setting anywhere in North America.

The project is therefore precedent-setting in its scope and will directly inform urban planning in British Columbia. The research results will also be used to populate the Tree Canopy Module with rainfall interception data.

A Regional Partnership: Collaboration between the University of British Columbia (UBC), the Greater Vancouver Regional District, the three North Shore municipalities, the Province, the Real Estate Foundation, and the Inter-Governmental Partnership has opened the door to a long-term partnership to bring science into the community:

- Because of the urban context for the research program, a principal focus is on quantifying the interception effectiveness of a single tree versus that for a cluster of trees.
- The variables influencing the interception process will be explored and quantified.
- Researchers will investigate the effects of tree density, tree structure and tree species on rainfall interception.

The Right Trees in the Right Places: There may be an optimum of tree density and structure whereby the interception is largest for a certain tree density. If this density can be determined, or even the relation of tree density to interception loss, local governments could provide urban developers with guidance as to how many trees need to be maintained within a residential lot to maintain a certain interception effect.
9. Summary

Over the past two decades, drainage vocabulary has been evolving as the planning focus has progressively expanded: from the channel in the 1980s...to the riparian corridor in the 1990s...and to land development practices in the 2000s.

In the 2000s, rainwater management practitioners are advancing the design of green infrastructure so that cumulative benefits rather than cumulative impacts can accrue over time at a watershed scale.

The First Paradigm-Shift:
When Stormwater Planning: A Guidebook for British Columbia was published in 2002, it set in motion a chain of outcomes that has resulted in British Columbia being recognized internationally as a leader in implementing a natural systems approach to rainwater management in the urban environment.

One of the Guidebook outcomes was the Water Balance Model for British Columbia. This tool has helped practitioners from different disciplines wrap their minds around how to achieve a light ‘hydrologic footprint’ and implement ‘green solutions’.

The lasting impact of the Guidebook is that it changed how people view site development practices, and it got them thinking about how to change those practices for the better.

The Next Paradigm-Shift:
Beyond the Guidebook is a runoff-based approach to urban drainage modeling that connects the dots between source control evaluation and stream health assessment. This approach is ‘where science meets analysis’ because rainwater runoff volume management is directly linked to stream erosion and water quality.

Integration of the Water Balance Model with QUALHYMO will enable hydrological engineers to go Beyond the Guidebook in achieving stream health protection and water quality objectives. The integrated tool - the ‘Water Balance Model powered by QUALHYMO’ - will enable assessment of source control performance plus simulate what happens to ‘overflows’ once source controls have reached their absorptive capacity.

Finally, this is what adaptive management means: We change direction when the science leads us to a better way.
Appendix A

Resources
Local Government Responsibility for Drainage

The Guidebook included a synopsis of drainage law and the authority of local government to implement rainwater management solutions. Local governments have extensive and very specific tools available to them. They also have the discretion to use them or not. Decisions about a local government’s appropriate level of involvement in rainwater and stream corridor management must therefore be guided by a set of clear, broadly agreed-upon objectives, as well as an understanding of the need for balance with other competing objectives and interests.

British Columbia Case Law: The courts see the impact of drainage on property as a ‘nuisance’, where a landowner’s use and enjoyment of his or her lands are interfered with as a result of actions or conduct on neighbouring lands. The courts have established precedents concerning the following:

- Right to drain land (allowing surface water to escape in a way provided by nature)
- Right to block drainage (surface water draining from higher land, as opposed to water in a natural stream)
- Measures of damages (damages will be awarded where liability is established)

In British Columbia, the Local Government Act has vested the responsibility for drainage with municipalities. This Act also enables local governments to address rainwater management much more comprehensively than in the past. The challenge is to use this legislation to achieve comprehensive goals and objectives in appropriate and effective ways. Division 6 of the Act (Sections 540 – 548) gives local government the direct power to manage rainwater:
http://www.qp.gov.bc.ca/statreg/stat/L/96323_17.htm#part15_division6

Liability for Downstream Impacts Due to Changes in the Water Balance: With the statutory authority for drainage, local governments can be held liable for the nuisance caused by drainage to downstream property owners. To assist in understanding the scope of local government liability, three relatively recent cases were presented in the Guidebook.

- Case 1 - Indexed as: Kerlenmar Holdings v. Matsqui (District) and District of Abbotsford

- Case 2 - Indexed as: Medomist Farms Ltd. v. Surrey (District)

- Case 3 - Indexed as: Peace Portal Properties Ltd. v. Corporation of the District of Surrey
 Judgement - May 1990 (From Dominion Law Reports 70 D.L. R. (4th) p. 525-535.)

In all three cases, the Court of Appeal in the Province of BC has upheld the decisions. These cases underscore the responsibility of local government for rainwater volume management.
Authority to Implement Rainwater Management Solutions: Some key Local Government Act planning, regulation, development approval and servicing provisions applicable to rainwater management are summarized below:

Regional Growth Strategy and Official Community Plan Goals
Section 849 (2) provides goal statements for:
- Protecting environmentally sensitive areas
- Reducing and preventing air, land and water pollution
- Protecting the quality and quantity of groundwater and surface water

Prohibition of Pollution
Section 725.1 enables local governments to enact bylaws prohibiting water pollution and to impose penalties for contravening these.

Soil Deposit and Removal (Erosion Control)
Section 723 enables local governments to include erosion control and sediment retention requirements associated with soil deposition and removal.

Zoning
Section 903 enables the prohibition or siting of regulated land uses that, for instance, generate non-point source pollution.

Environmental Policies
Section 879 enables Official Community Plans (OCPs) to include “policies of the local government relating to the preservation, protection and enhancement of the natural environment, its ecosystems and biological diversity”.

Development approval information areas or circumstances (Section 879.1) enable the designation of areas or circumstances, or areas for which in specified circumstances, development approval information may be required.

Runoff Control
Section 907 enables local governments to set maximum percentages of areas that can be covered by impermeable material and to set requirements for ongoing drainage management.

Landscaping
Section 909 enables local governments to set standards for and regulate the provision of landscaping for the purposes of preserving, protecting, or restoring and enhancing the natural environment (e.g. requiring streamside vegetation).

Development Permit Areas
Development permit areas designated in an Official Community Plan (see Section 919.1) cannot be altered, subdivided, or built on without a development permit. The permit can contain conditions for the protection of the environment.

Subdivision Servicing Requirements
Section 938 enables a local government to “require that, within a subdivision”… “a drainage collection or a drainage management system be provided, located and constructed in accordance with the standards established in the bylaw”

In addition to the above, other rainwater management powers can be found in provisions dealing with building regulations, contaminated sites, development cost charges, ditches and drainage, dikes, development works agreements, flood protection, farming, highways, improvement districts and specified areas, park land, regional district services, sewage systems, subdivision, temporary commercial and industrial use, tree cutting, utilities, water and waste management.
Rainwater Management Tools in British Columbia

Rainwater management is a key component of protecting quality of life, property and ecosystems. Rainwater management is a requirement for approved Liquid Waste Management Plans (LWMP). LWMPs are created by local governments under a public process in cooperation with the Province. In the Greater Vancouver region, for example, municipalities are legally obligated to fully implement integrated rainwater management policies, plans and practices by 2012.

GUIDEBOOK: In 2002, the Province published Stormwater Planning: A Guidebook for British Columbia. The Guidebook formalized a science-based understanding to set performance targets for reducing rainwater runoff volumes from individual sites.

WATER BALANCE MODEL: Also in 2002, an Inter-Governmental Partnership was formed to develop the web-based Water Balance Model for British Columbia as an extension of the Guidebook. The Partnership recognized that practitioners and others needed an easy-to-use tool so that they could readily calculate annual runoff volumes under different combinations of building coverage, rainfall, soil type and depth, tree canopy coverage, and source controls.

DESIGN GUIDELINES: To complement the Water Balance Model, the Greater Vancouver municipalities commissioned a set of Source Control Design Guidelines for landscape-based solutions – that is, absorbent landscapes, rain gardens, pervious pavers, infiltration swale systems, infiltration trenches and green roofs – for reducing rainwater runoff volumes. Published in 2005, the Guidelines are supplemented by a set of posters that display the results of the applied research. The Guidelines were adapted from design standards from areas of England, Europe, Australia, New Zealand and North America with comparable soil and climate conditions to southwest British Columbia.

WATER BALANCE MODEL POWERED BY QUALHYMO: In 2005, the Inter-Governmental Partnership initiated integration of the Water Balance Model with QUALHYMO.

Web links for the foregoing are listed as follows:

- Stormwater Planning: A Guidebook for British Columbia
- Water Balance Model for British Columbia:
 http://www.waterbalance.ca
- Stormwater Source Control Design Guidelines 2005
The Green Infrastructure Guide

Published in 2007, The Green Infrastructure Guide: Issues, Implementation Strategies and Success Stories was developed by West Coast Environmental Law and is a deliverable under the Outreach and Continuing Education Program of the Green Infrastructure Partnership.

The Guide builds on a body of work that has preceded it, and is designed to be used in conjunction with the range of important resources available from various organizations and government to support a sustainable approach to community development of infrastructure.

The Guide is designed to complement Stormwater Planning: A Guidebook for British Columbia and serve as a useful backdrop for conversations to take place both within and beyond the local government’s planning department and legal advisors.

Distinguishing Natural from Engineered Green Infrastructure: Two complementary strategies can “green” a community and its infrastructure: first, preserving as much as possible of the natural green infrastructure; and secondly, promoting designs that soften the footprint of development.

Green infrastructure design is engineering design that takes a “design with nature” approach, to both mitigate the potential impacts of existing and future development and growth and to provide valuable services.

The Guide provides guidance on how local governments may, using legal and policy strategies, encourage or require more sustainable infrastructure designs. It refers readers to strategies, and highlights case studies of local governments that have already taken steps to incorporate a green infrastructure approach. The focus is on implementation mechanisms, issues and barriers, and on what lessons have been learned from experiences to date.

Legal and Policy Strategies to Support Green Infrastructure: The Guide traces some of BC’s local government experience in implementing engineered green infrastructure designs. The Guide’s purpose is to encourage successful designs, by reporting on what the legal and policy strategies are, what some of the implementation hurdles (and solutions) have been, and how they have been effective in achieving sustainability goals.

The intent is to support the efforts of local government officials and decision-makers to green their community’s infrastructure, by sharing the tools and the collective wisdom that have been gained as a result of implementation experiences from around the province.

Water Bucket Communities-of-Interest

For stories and information on the latest developments in BC relating to the state-of-the-art, go to either of these communities-of-interest (COI):

- www.rainwater-management.ca or
- www.greeninfrastructure.ca

Funding for the Rainwater Management COI was provided by the Greater Vancouver Regional District through the Stormwater Interagency Liaison Group, a technical committee that is constituted under provisions of the Liquid Waste Management Plan for the GVRD.

The Green Infrastructure COI was funded by the Province of British Columbia in order to provide the Green Infrastructure Partnership with a communication vehicle

For a historical perspective on the British Columbia experience, and to understand the changes that have seen the single function view of traditional 'stormwater management' give way to the integrated and comprehensive perspective that is captured by the term 'rainwater management', go to:

For more on the Tree Canopy Research Project that is being undertaken by the University of British Columbia in collaboration with the three North Shore municipalities (District of North Vancouver, District of West Vancouver, and City of North Vancouver), the Water Balance Model Partnership, the Greater Vancouver Regional District, the Province of British Columbia, and the Real Estate Foundation of British Columbia, go to: