Sustainable Rainwater Management: What Does It Look Like?

The 'Cowichan Valley Regional Team' presents:

Rainwater Management in the Cowichan Valley

Rainwater Management in Central Saanich

Rainwater Management in a Watershed Sustainability Context

An Introduction to the Rebuilt Water Balance Model

Genesis for Water Balance Model in 2000:

Demonstrate that we could make a difference at a watershed scale, over time, one property at a time

Historical Context for WBM Evolution

- 2000 Water Balance Methodology developed
- 2001 prototype WBM implemented on a spreads
- 2001 Water Balance Methodology incorp
- 2002 Stormwater Guidebook release
- 2003 web-based WBM Is a Convention
- 2004 outreach programment of multiple regions
- 2007 integration with QUALHYMO engine
- 200 rolled out with "Living Water Smart"
- Ived "Premier's Award for Innovation & Excellence"
- 2 9 "The Plan for the Future" released
- 2010 federal / provincial RAC program funded 4 new modules
- 2011 "Version 2.1" rebuilt on a Linux / Wordpress platform
- 2012 "WBM Express for Homeowners" coming next

In 2000, we went back to basics and developed the concept of a Rainfall Spectrum. This led to the Water Balance Methodology.

Days

Volume

Light Showers Account for Most of the Annual Rainfall Volume

In this segment of the workshop, you will learn that the Water Balance Model is a scenario comparison tool that.....

1. Supports 'sustainable rainwater management' because it:

- Promotes an understanding of how water moves thru soil
- Promotes an understanding of how trees intercept rainfall
- Is used to evaluate performance targets
- Links rainfall to stream health

2. Creates a vision of a future watershed because it:

- Bridges engineering, planning and ecology
- Promotes integration of perspectives
- Enables informed decisions about land use choices
- Enables informed decisions about green infrastructure practices

Current Examples

- Numerous Examples
- Green Street
- Modified green streets
- Green highways
- On-Lot
- Everyone has a different favorite application

Green Street

Sea Street (Street Edge Alternative)

Etobicoke Example

http://www.civil.ryerson.ca/urban/techno/stormwater/source/10-2-8/index.html

On Lot Systems

Atlantis Rain Tank

On Lot System

Important lessons:

- Move the inflow upstream to allow treatment and minimize blockage of controls
- 2. Allow Interflow

Typical Multi Family Lot

FLOW CONTROL MANHOLE

PLAN DETAIL

Typical surface area of the infiltration system will be 5% of the total site area.

TYPICAL SECTION

Stormtech

Current State of Affairs

"I think you should be more explicit here in step two."

Source Control Sizing Options

- Prescriptive
 - Very simple methods
 - No analysis
- Water Balance Methodology
 - Analysis allows optimization
 - Understand the operation and performance
 - Reduces cost

Prescriptive

- ◆ Retain ½ MAS (or some volume)
 - No provision for predevelopment state
 - No provision for system operation
 - MetroVancouver recommends .75MAS
- Assumes:
 - One size is best for all conditions
 - They function as intended
 - Function is good

Water Balance Methodology

- Integrated process is critical
 - Establish Specific Watershed Objectives
 - Hydrologic Impact Assessment
 - Establish Targets
 - Optimize Systems to Achieve Targets
 - Minimize Cost
 - Build and Monitor (or just watch)
 - Revise as needed to achieve Targets

Watershed Objectives

- Establish the hydrologic change
 - Rainfall Discharge relationship
- Streamflow Impacts
 - Flood peaks
 - Flow duration
- Stream Erosion maintain or reduce
- Water quality and quantity

Hydrologic Change

The need is for more than just volume control

Fergus Creek ISMP

Fergus Creek Watershed

Regional Hydrologic Analysis

- Establish peak flood flows
- Establish hydrograph shape
- Establish discharge volumes for
 - Annual and monthly
- Establish flow duration
- Transfer data to Fergus Creek

Exceedance - Fergus Creek

Stream Erosion - Fergus Creek

Water Quality - Fergus Creek Sediment Loadings

- Two projects in Surrey retention volume
 - Prescriptive 750 m³/ha
 - Fergus Creek ISMP 150 m³/ha
- Which system will work better?
- Is the savings in engineering worth the extra cost in construction?
- Your choice; prescriptive or Water Balance Methodology?

Current State of Affairs

"I think you should be more explicit here in step two."

- Continuous simulation vs design storm
- **♦**Soils
- Infiltration
- Erosion equations
- Process

How is Continuous Modelling Different?

Single Event Model

Source USEPA SWMM Manual

Only sees surface runoff

Continuous Model

QUALHYMO

EVAP

|a
| Q
| SVOL

GRWLOS

Includes shallow groundwater flow

More than just runoff

- Data required
 - Rainfall
 - Precipitation
 - Temperature
 - Evaporation
 - Member municipality zoning
 - Soils native and otherwise
 - Surface conditions

Provided by Water Balance Model

User Supplied

What is a native soil?

- Native soils are the surface soils that, in their natural location and condition, have been modified by weathering and have an accumulation of organic matter
- The Canadian System of Soil Classification describes the soil horizons above the Parent Geological Material
- These have <u>regular exposure</u> to surface water and can be very shallow or very deep
 - Typically about 600 mm

Soil Texture

US Version

Canadian Version

Soil Moisture

Infiltration or Permeability?

- Needed for Volume Reduction Systems
- Infiltration rate is not permeability
- Both have similar units
 - (distance / time)
- Infiltration measures flow crossing a surface boundary
- Permeability is saturated flow velocity through a porous media

Darcy's Law

$$Q = AK \left(\Delta h/l \right)$$
 (m³/s), or $V = K \left(\Delta h/l \right)$ (m/s)

A = flow area perpendicular to L (m^2)

K = hydraulic permeability (m/s)

l = flow path length (m)

 Δh = change in hydraulic head over the path L (m/m)

Typical Subsurface Infiltration

Groundwater

Source: Piteau East Clayton NCP Engineering Support Documentation

East Clayton uplands to lowlands transition

Stream Erosion Calculations

Tractive Force

Based upon Tractive Force calculations

Tractive Force Equation

τ = σRs, where
 σ = unit weight of water
 R = hydraulic radius of flow, and
 s = slope of channel

- Simple equation
 - Applicable for a wide, open channels
- Include banks for narrow channels
 - Banks are often the critical part

Impulse Equation

```
I = \sum \tau PT, where
```

 τ = Tractive Force

P = wetted perimeter

T = time

- A measure of energy applied to the stream cross section in the form of friction
- Use duration of flow to estimate total Impulse for a range of flow depths
- Can exclude non-erosive tractive force
- Easy to include in continuous modelling

WBM Model Process Diagram

Modelling Surface Changes

- Model Impacts and Mitigation
- Mitigation with Absorbent Landscapes
 - Tree cover density
 - Increased top soil depth
 - Porous pavement
 - Green Roof Typical
 - Some infiltration swales without storage
- HYDROLOGIC MODEL

Model Surface Changes

OPERATION

Modifies the surface to change absorption and runoff characteristics.

Alterations occur in:

- Imperviousness
- Surface roughness
- Infiltration rates
- Soil moisture reservoir storage and potential capture

HYDROLOGIC MODEL

Surface Change Types

Absorbent Landscaping

Pervious Paving

Infiltration Swale - Without Underdrain

Rain Garden - Without Underdrain

Box Planter - Without Underdrain

Infiltration Trench

Replaces the area to which they are applied

Modelling Volume Reduction

- Capture surface runoff and STORE it
- Infiltration for volume reduction
 - Rain gardens
 - Infiltration swales with storage
 - Surface or subsurface storage
 - Infiltration ponds
 - Underground galleries
- HYDRAULIC MODEL

Model Volume Reduction Systems

Volume Reduction Types

Infiltration Swale - With Underdrain

Green Roof - With Underdrain

Rain Garden - With Underdrain

Infiltration Pond

Box Planter - With Underdrain

Underground Source Control

Surface types have evaporation, underground systems do not

Surface types replace the area to which they are applied

Where Next?

WBM does not do pipe design

 Solution – Screening Tool a simple to use planning level assessment tool to evaluate drainage system performance

WBM Express tailored for your Municipality

- Municipality establishes watershed objectives
- User selects how to achieve objectives

Town-Hall Sharing

What Do You Wonder?
What Story Would You Like to Tell?